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Abstract

This paper introduces tensor methods for solving large, sparse nonlinear least squares
problems where the Jacobian either is analytically available or is computed by finite differ-
ence approximations. Tensor methods have been shown to have very good computational
performance for small to medium-sized, dense nonlinear least squares problems. In this pa-
per we consider the application of tensor methods to large, sparse nonlinear least squares
problems. This involves an entirely new way of solving the tensor model that is efficient
for sparse problems. A number of interesting linear algebraic implementation issues are ad-
dressed. The test results of the tensor method applied to a set of sparse nonlinear least
squares problems compared with those of the standard Gauss-Newton method reveal that
the tensor method is significantly more robust and efficient than the standard Gauss-Newton
method.
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1 Introduction

In this paper we introduce tensor methods for large, sparse nonlinear least squares problems.
The nonlinear least squares problem is

mini%lize [EF(z)|l2, F(z): R — R, m > n, (1.1)
zERT

where it is assumed that F(x) is at least once continuously differentiable and F’(x) is sparse.
Large sparse nonlinear least squares arise especially in data-fitting problems. Often, F'(z.) is ill
conditioned or singular with a small rank deficiency. For example, this occurs if two parameters
in the model that is being fit are closely correlated. Large, sparse nonlinear least squares
methods usually are solved by sparse variants of the Gauss-Newton method. Tensor methods
are especially intended to improve the efficiency of standard algorithms based on the Gauss-
Newton method when F’(z.) is singular or ill conditioned. Tensor methods are also intended to
be at least as efficient as standard methods on problems where F'(z.) is nonsingular and well
conditioned, and in practice they often prove to be considerably more efficient on these problems
as well.

The tensor model came initially from the research of [23] for nonlinear equations and was
extended to nonlinear least squares in [8]. For both nonlinear equations and nonlinear least
squares, the tensor model is a quadratic model of F(z) that has the form

M(zotd) = F(ao)+ Fl(z)d + %Tcdd, (1.2)

where 2, is the current iterate, F’'(x.) € ®™*" is the Jacobian matrix at z., and T, € ™*"*"
is the tensor term at x.. The notation T.dd is defined as follows.
Definition 1.1. Let 7' € R™*™*"_ Then T is composed of n horizontal faces H; € R"*" i =
1,...,n, where H;[j,k] = T[i, 7, k]. For v,w € ", Tvw € R with

n n

Towli] = v Hyw = Z > i, j, k]o[jlwlk].

7=1k=1

The tensor term is selected so that the model interpolates a very small number, p, of function
values from previous iterations. Hence, T, is a very low rank tensor, which is crucial to the
efficiency of the tensor method. Methods for forming the tensor term and solving the tensor
model for dense nonlinear least squares problems are reviewed in more detail in the next section.

Methods based on (1.2) have been shown to be efficient in terms of algorithmic overhead
and to exhibit fast local convergence as well. In the test results obtained for both nonsingular
and singular dense nonlinear least squares problems, the improvement of the tensor method
over the standard Gauss-Newton method is substantial, averaging about 52% in iterations and
53% in function evaluations when the line search is used, and about 35% in iterations and 28%
in function evaluations when the trust region is used, on problems solved by both methods.
Furthermore, the tensor method solves several problems that the Gauss-Newton method does
not, and the reverse is never the case.

In order to extend tensor methods to large, sparse nonlinear least squares problems, several
key issues need to be considered. First, tensor methods require that the Jacobian matrix be



available at each iteration. It turns out that this requirement is not a problem in the large,
sparse case because derivatives usually are computed by using efficient sparse finite differences
(see [10, 11, 12, 13]) or automatic differentiation (see, e.g., [3]). Second, the method for forming
the tensor model must be modified to adapt to the large, sparse case. Again, the solution is
simple: we need only to change the upper bound on the number of recent past points from /n
to a much smaller number, say 1 or 2. This process eliminates virtually all of the cost of the
modified Gram-Schmidt procedure for selecting the past points that is used in the dense case (see
Section 2). In addition, since the number of past points selected for the interpolation process is
almost always equal to 1 or 2 in practice, the performance of the tensor method probably will
not be affected by this modification. The final question is how to use the sparsity of the Jacobian
matrix efficiently in computing the tensor step. The tensor algorithms that have been designed
for dense problems are QR-based algorithms involving orthogonal transformations of both the
variable and function space. QR-based algorithms are very effective for solving the tensor model
when the Jacobian is dense, because they are efficient and very stable numerically, especially
when the tensor model has no real root or when the Jacobian is singular or ill conditioned.
However, QR-based algorithms are not efficient for sparse problems because they destroy the
sparsity of the Jacobian as a result of the orthogonal transformation of the variable space.

In this paper we address this last problem by developing an entirely new way of solving the
tensor model that is efflicient for sparse problems. We consider a number of interesting linear
algebraic implementation issues. We also show how to solve the tensor model efficiently when
the Jacobian is singular and how to compute the Gauss-Newton step, which is used in the tensor
algorithm, as a by-product of the tensor step calculation. We then give test results of the tensor
method applied to a set of large, sparse nonlinear least squares problems. These results indicate
that the tensor method is significantly more robust and efficient than the Gauss-Newton method,
in terms of iterations, function evaluations, and execution time.

The remainder of this paper is organized as follows. In Section 2 we briefly review tensor
methods for dense nonlinear least squares problems. In Section 3 we describe efficient algorithms
for solving the tensor model in the cases when the Jacobian matrix has full rank and when it
is rank deficient. Then, in Section 4, we discuss the large, sparse linear least squares problems
that arise from tensor algorithms, and we present our approach for solving these least squares
problems. In Section 5 we describe an efficient method to compute the Gauss-Newton step as a
by-product of the solution of the tensor model. In Section 6 we give an overall implementation
of the tensor method for sparse, nonlinear least squares problems; present summary statistics
of the test results; and provide a detailed analysis of these results. Finally, in Section 7, we
summarize our work and discuss future research.

2 Overview of Tensor Methods for Dense Nonlinear Least Squares

Tensor methods are general-purpose methods intended especially for problems where the Ja-
cobian matrix at the solution is singular or ill conditioned. The idea is to base each iteration
upon a model that has more information than the standard linear model but is not appreciably
more expensive to form, store, or solve. Each iteration is based upon a quadratic model (1.2)
of the nonlinear function F(z). The particular choice of the tensor term 7, € R™*"*" causes



the second-order term 7T.dd in (1.2) to have a simple and useful form.
In tensor methods, the tensor term 7. is chosen to allow the model M (z.+ d) to interpolate
values of the function F(x) at p past iterates z_;. That is, the model should satisfy

1
Fla_g) = F(z.)+ F'(z.)sk + §Tcsk5k, E=1,...,p, (2.1)
where
S = T_p — Te, k= 1,...,p
For dense problems, the past points _y,...,2_, are selected so that the set of directions {s}

from z. to the selected points is strongly linearly independent; each direction sj is required
to make an angle of at least 45 degrees with the subspace spanned by the previously selected
past directions. The procedure of finding linearly independent directions is implemented easily
by using a modified Gram-Schmidt algorithm, and usually results in p = 1 or 2. After the
linearly independent past directions s; are selected, the tensor term is chosen by the procedure
of Schnabel and Frank [23], which generalizes in a straightforward way to nonlinear least squares.
T. is chosen to be the smallest matrix that satisfies the interpolation conditions (2.1), that is,

minimize ||T% ||z (2.2)
T €§Rm><n><n

subject to Tespsi = 2(F(a_g) — F(z.) — F'(z.)s;),
where ||T% ||F, the Frobenius norm of T¢, is defined by

m

ITellE = Y>>0 D (Telij.k

=1 j=1k=1

The solution to (2.2) is the sum of p rank-one tensors whose horizontal faces are symmetric:

p
= Z )8k Sk, (2.3)
k=1

where ay, is the k-th column of A € R™*P A is defined by A = ZM ™', Z is an (m x p) matrix
whose columns are Z; = 2(F(2_;) — F(x.) — F'(x.)s;), and M is a (p X p) matrix defined by
M;; = (s;7s;)%,1<i,j <p.

If we use the tensor term (2.3), the tensor model (1.2) becomes

M(ze+d) = F(ee) + Fl(2)d + = Zak{dek}z (2.4)

The simple form of the quadratic term in (2.4) is the key to being able to efficiently form,
store, and solve the tensor model. The cost of forming the tensor term in the tensor model is
O(mnp) < O(mn!®) arithmetic operations, since p < /n, which for dense problems is small
in comparison with the O(mn?) cost per iteration of Gauss-Newton methods. The additional
storage required is 4p m-vectors, which is small in comparison with the storage for the Jacobian.



After the tensor model (2.4) is formed, the least squares solution of the model,
inimize || M (z. + d) (|2, 2.
minimize | M (z. + d) | (2.5)

is computed. In [8], we showed that the solution to (2.5) can be reduced to the solution of a
small number (m — n + ¢) quadratic equations in p unknowns, plus the solution of n — ¢ linear
equations in n — p unknowns. Here ¢ is equal to p whenever F’(z.) is nonsingular and usually
when rank(F’(z.)) > n — p; otherwise, ¢ is greater than p. Thus the system of linear equations
is square or underdetermined, and the system of quadratic equations is equally determined or
overdetermined. The main steps of the algorithm are the following:

1. An orthogonal transformation of the variable space is used to cause the m equations in n
unknowns to be linear in n — p variables dy € ®"P_ and quadratic only in the remaining
p variables dy € RP.

2. An orthogonal transformation of the equations is used to eliminate the n — p transformed
linear variables from n — ¢ of the equations. The result is a system of m — n + ¢ quadratic
equations in the p unknowns, dz, plus a system of n — ¢ equations in all the variables that
is linear in the » — p unknowns d;.

3. A nonlinear unconstrained optimization software package, UNCMIN [24], is used to min-
imize the I3 norm of the m — n + ¢ quadratic equations in the p unknowns dy. (If p = 1,
this procedure is done analytically instead.)

4. The system of n — ¢ linear equations that is linear in the remaining n — p unknowns is

solved for d;.

The arithmetic cost per iteration of the above process is the standard O(mn?) cost of a QR
factorization of an m X n matrix, plus an additional O(mnp) < O(mn!-®) operations, plus the
cost of using UNCMIN in Step 3 of the algorithm. The cost of using UNCMIN is expected
to be O(p*) < O(n?) operations, since each iteration requires O(p®) (O(p*q) when ¢ > p)
operations and a small multiple of p iterations generally suffices. Thus, the total cost of the
above algorithm is the O(mn?) cost of the standard method plus at most an additional cost of
O(mn!®) arithmetic operations. Note that when p = 1 and ¢ > 1, the one-variable minimization
problem is solved very inexpensively in closed form; this turns out to be the most common case
in practice.

The Gauss-Newton step is computed inexpensively (in O(mnp) operations) as a by-product
of the tensor step solution. Using the tensor step and the Gauss-Newton step, a line search or a
two-dimensional trust region global strategy determines the next iterate. The overall algorithm
is summarized below.

Algorithm 2.1 An Tteration of the Tensor Method

Given m, n, x., F'(z.)

Step 0 Calculate F'(z.), and decide whether to stop.



Step 1 Select the past points to use in the tensor model from among the y/n most recent points.

Step 2 Calculate the second-order term of the tensor model, T,, so that the tensor model
interpolates F'(x) at all the points selected in Step 1.

Step 3 Find a minimizer (in the /3 norm) of the tensor model.
Step 4 Compute the Gauss-Newton step as a by-product of the tensor model solution.

Step 5 Compute the next iterate x4 using a line search or trust region global strategy based
on the tensor or Gauss-Newton step.

Step 6 Set z. — x4, F(z.) < F(z4), go to Step 0.

At each iteration, the tensor method bases its step upon either the tensor step or the Gauss-
Newton step. The Gauss-Newton step is chosen whenever the tensor step is not a descent
direction, or the tensor step is a minimizer of the tensor model and does not provide enough
decrease in the tensor model, or the quadratic system of m — n + ¢ equations in p unknowns
cannot be solved by UNCMIN within the iteration limit. Otherwise the tensor step is chosen.
For further details, see [8].

3 Solving the Tensor Model for Sparse Nonlinear Least Squares

The major challenge in constructing an efficient tensor method for sparse nonlinear least squares
problems is finding a way to obtain the root or minimizer of the tensor model that preserves and
effectively uses the sparsity of the Jacobian matrix. This section presents such a method that
works both when the Jacobian is nonsingular and when it is rank-deficient. The basic approach
is related to the approach given in [7] for solving the tensor model for sparse nonlinear equations,
but the situation for nonlinear least squares is considerably different and more complex, as are
the linear algebraic issues (considered in the following sections). For simplicity, we use the
matrix notation A{STd}? to denote the quadratic term Y-7_, ar{d?s;}? of the tensor model,
where A € R™*P_ with a; being the k-th column of A, S € %P with s being the k-th column
of §, and ({STd}?); = (sTd)%.

3.1 Solving the Tensor Model When the Jacobian Has Full Rank

In this section we show how to reduce the solution of the tensor model problem (2.5) to a sparse
matrix factorization, a very small number of backsolves using this factorization, and a very small
unconstrained optimization problem. Let J = F'(z.), and J* € R"*™ be the pseudo-inverse
matrix of J (i.e., J* = (JTJ)71JT). Let @ be an orthogonal matrix that has the structure

UT
Q= | N |,
ZT

where U € R7*P, U = J"’TS(ST(JTJ)_IS)_%; N € ®R*(m=1) is an orthonormal basis for the
null space of J; and Z € R7*("=P) is an orthonormal basis for the subspace orthogonal to the



subspace spanned by the columns of J+T5 and N. Note that ZTJ+'S = ZTN = 0. Now
consider the equivalent minimization problem to (2.5),

mlCIllelglnlzeHQM(wc—l-d)Hg. (3.1)

If we define W = (ST(JTJ)719), B = 57d, and
1
qB) = STITF+5+ §STJ+Aﬁ2, (3.2)
where 3% denotes the vector in R? whose i-th component is (3;)%, then

W=3q(3)
QM(z.+d) = | NTF+ INTAB? |. (3.3)
ZTM (2. + d)

The following lemma is the key to showing that (3.1) can be solved efficiently through (3.3).

Lemma 3.1. For any 3 € R?, there exists a d € R” such that ZT M (2, + d) = 0 and STd = 3.
Proof. Let
d = (JEHLSWg+ Jt 7, (3.4)

where ¢ is arbitrary vector € %77, Then
§Td = STt nHtswig+ 5Ttz = 3,

and

ZTM (2. + d) ZTF + ZVJ(JT ) TLSW =3 + JH 2t 4+ 2T Ap?
= Z'F4 2Tt swls 4+ 2T 0t 7t + L 2T A2
From the definitions of N and J+
NNT 4+ JJ+ =1,
and hence
JJt = I-NNT.
Now if we substitute the above expression for JJ7T into the expression ZTJJTZ, we get
7vjjt7z = 7' - NNz = 777 = I

Finally, since ZTJ¥7S = 0, and ZTJJ*Z = I, equation (3.5) simplifies to

1
ZPM(z.4+d) = ZTF + 1+ §ZTAﬁ2. (3.6)

Thus the choice )
t = —ZY(F+ 5Aﬁ2) (3.7)

7



in (3.4) yields a value of d for which ZT M (2.4 d) =0 and 57d = 3. O

Since for any 3, we are able to find a step d such that ZTM'(QUC +d) =0 and sTd = p,
Lemma 3.1 and (3.3) show that problem (3.1) can be reduced to the following minimization
problem in p variables:

mipiigire [ Yo ] I3 (338)

where n(3) = NTF + %NTAﬁQ. Furthermore, once the value of 5 that solves problem (3.8) is
determined, we can obtain the solution d to (3.1) as follows. Substituting (3.7) into (3.4) yields
d:@ﬂﬂ*ﬁW*ﬁ—ﬁZZWF+;w%. (3.9)
Since () is orthogonal, we have
ZZV+ NNT Ut = 1,
and hence
ZZT = I-NNT - uUT = [ - NNT - J+Tgw=15T+,
The substitution of the above expression for ZZ7 into equation (3.9) yields
d = (JT))LSWE — gt — NNT — JtTsw=LsT j+)(F 4+ Lag?)
= (JTI)TLSWIB — JH(F + LAB%) + JFNNT(F + $A3%) (3.10)
+ JETSWLST JH(F 4 LAg?).
Since JTN = 0, JTJTT = (JTJ)™L, and ¢(8) = STJTF 4 8 + LSTJ+ AB%, equation (3.10)

simplifies to

d:(ﬂﬁrwwﬁﬂm—JﬂF+;w%. (3.11)

Thus, once we know 3, we simply calculate the value of ¢(5) and substitute these two values
into equation (3.11) to obtain the value of d.

Now we discuss how to determine the value of § that minimizes (3.8). First, we need to
calculate n(3), and in particular NTF and NTA. Since the minimization problem (3.8) is
equivalent to

minimize {{[W~24(5) 13 + [ln(3) 13}, (3.12)

where

1
In(®)13 = FINNTF + FINNTAS + 52 ATNNTAB?,

we actually need to compute only NNTF and NNTA. But NNTF is the projection of F' into
the orthogonal complement of the subspace spanned by the columns of J and therefore is the
residual of the least squares problem Ja = F. Similarly, NNTA are the projections of the
columns a; of the matrix A into the orthogonal complement of the subspace spanned by the



columns of J and hence are the residuals of the least squares problems Jz; =a;, j=1,...,p.
Hence, these quantities are available from the computation of J*F and JT A, by

NNTF = F—-JJ*tF,
and
NNTA = A—JJTA,

respectively. Thus, if we let Ry be the residual vector of the least squares problem Jz = F
and let Ry be the matrix whose columns are the residuals of the least squares problems Jz; =
a;, j=1,...,p, then

1 1
IO = FUR+ RaTAG? 4 332 ATR G = [[Ry + 56% R 5. (3.13)

Now we can give an efficient algorithm that solves problem 3.1. (An alternative algorithm was
considered in [6] but proved to be less efficient.)

Algorithm 3.1 Minimization of the Tensor Model When the Jacobian Has Full Rank
Let J € R™*™ be sparse, F € R™, § € R"*P_ and A € R™*P, m > n.

Step 0 Form ¢(f3) (i.e., equation (3.2)) as follows: Form JTF and JT A, by solving the sparse
linear least squares problem Jz = F’ and the sparse linear least squares problems Jz; =
a;, j = 1,...,p, respectively, using the augmented matrix approach (4.1). These linear
least squares solutions will yield the values of By and Ry as well.

Step 1 Form the positive definite matrix W = ST(JTJ)7LS as follows: Form (JT.J)71S, by
solving the sparse system of equations (JTJ)wj = s;,7 = 1,...,p, using the augmented
matrix approach (4.4). Then premultiply (J7J)™'S by ST to obtain W.

Step 2 Perform a Cholesky decomposition of W (i.e., W = LLT) to obtain I € RP*P, a lower
triangular matrix.

Step 3 Use UNCMIN [24], an unconstrained minimization software package, to solve
inimize {|| L~ 3 3 14
minimize {||L="¢(5) [|2 + lIn(5) 12} (3.14)

where n() = Ry + 13?R5, or solve (3.14) in closed form if p = 1.
Step 4 Substitute the value of the solution to (3.14), A., and ¢(3.) into the following equation
for d,
1
d = (JTH)LSWg(B) - JTF - §J+Aﬁf. (3.15)

The total cost of Algorithm 3.1 is the factorization of the sparse augmented matrix in (4.1), 2p+1
solves using this factorization, the unconstrained minimization of a function of p variables, and
some lower-order (O(n)) costs.



3.2 Solving the Tensor Model When the Jacobian Is Rank Deficient

An important attribute of tensor methods is that the tensor model may have a well-defined
solution even if the Jacobian matrix at the current iterate is singular. A stable solution procedure
is given in [8] for dense nonlinear least squares. This section gives a method that is efficient
when the Jacobian is large and sparse.

If the Jacobian matrix is rank deficient, we can solve the tensor model by building upon the
process just described. Specifically, we transform the tensor model given in (2.4) as follows. Let
d=d+ 6 and ﬁ 5Td for a fixed d where 6 is the new unknown. Substituting this expression
for d in the tensor model (2.4) yields the following model, which becomes a function of é:

R 1 R
M(z.+06) = F(ao)+ J(2:)(d+68) + §A{ST(d +6)}2 (3.16)
Equation (3.16) is equivalent to
. . A 1
Mz, +8) = F(a)+ J(zo)é + §A{ST6}2, (3.17)

where D = diag(3), F(z.) = F(a.) + J(w)d + $A{STd}?, and J(x.) = J(w.) + AD;ST.

To solve this model in the case when J(z.) is singular, we try to find the value of ¢ that
minimizes ||M(z.+ 8)||2. If rank(J) > n — p, usually J will have full column rank (a necessary
and sufficient condition for J to be nonsingular is similar to that for sparse nonlinear equations
[7]). Thus, if J has full rank, we can use Algorithm 3.1 to obtain the value of 8, but we use a
special procedure (described in Section 4.2) to efficiently solve the linear least squares problems
involving JT. We then obtain the tensor step by adding the value of § to the fixed step d. An
appropriate choice of d would be the step computed in the previous iteration. We will use the
singular Gauss-Newton step computed in Section 5 as the step direction for the current iteration
in the case when J is rank deficient. The entire procedure is given in Algorithm 6.1.

4 Solving the Sparse Least Squares Problems

The algorithm described in the preceding section requires the solution of large, sparse linear
least squares problems. The method that we use for solving these linear least squares problems
(i.e., minimize epn [|J2 — b||2) is based on the augmented system approach first proposed by
Hachtel [20],

I J r b
= , (4.1)
JT 0 x 0

where [ is the m x m identity matrix. The first block row of equation (4.1) states that the
residual vector is given by

r = b-Jux, (4.2)

10



and the second block row requires that
JIr =0 (4.3)

be satisfied. Substituting (4.2) into (4.3) gives the normal equations, thereby showing that
x given by (4.1) solves the linear least squares problem. The system (4.1) is symmetric and
indefinite and can be solved by sparse techniques.

One reason that we use (4.1) is the efficiency that this approach has been shown to have. Duff
and Reid [16] compared four methods for the solution for sparse linear least squares problems:
the direct formation and solution of normal equations, orthogonal reduction to upper triangular
form [19, 18], LU factorization of A [22], and Hachtel’s augmented matrix method (4.1). The
criteria used for comparison were the number of operations for matrix decomposition, storage,
and number of operations required for subsequent solutions. Dufl and Reid found that in every
instance the best algorithm is either use of normal equations or Hachtel’s augmented matrix
method. Because of ill conditioning with the use of normal equations however, they recommend
the augmented matrix method.

A second reason we use (4.1) is that various research has shown the method to be quite accu-
rate for large, sparse linear least squares. Duff and Reid [16] conducted tests on the augmented
matrix method, avoiding any multiplier bigger in modulus (or norm) than a limit « and making
this stability requirement override sparsity considerations. With u set to 20 they found essen-
tially no growth in the size of the largest matrix element (and on some problems they found no
such growth with u as high as 10%). The conditioning of the augmented system (4.1) was studied
by Bjorck [4]. He considered the slightly generalized system obtained by scaling the augmented
system with a scaling factor a. A simple analysis shows that if & is chosen equal to the smallest
singular value of A, the condition number of the augmented system is approximately equal to
1.6 times the condition number of A, and is about the same as the condition number of A when
A is ill conditioned. Arioli et al. [2] demonstrated that conditioning can be greatly improved
by a scaling similar to that of Bjorck; they suggested an automatic technique for selecting the
best scaling factor a. Unfortunately, both Bjorck and Arioli et al. use a condition number
estimator to calculate o, which would make a tensor iteration very expensive. We decided to
use a heuristic scaling strategy by Cleve Moler [21], which sets the value of a to the maximum
element of the matrix in absolute value divided by 1000.

A third reason we use the augmented system approach is that it can be extended to solve the
tensor model when the Jacobian matrix is rank deficient. This extension is discussed in Section
6.

Given that the matrix of equation (4.1) is symmetric, one would normally expect that the
solution scheme that took advantage of this fact would have much lower storage requirements
for the factors than would an unsymmetric code. By ignoring the symmetry, however, one can
bias the pivot selection so that early pivots are chosen from the last n rows (thereby exploiting
the zeros in the right-hand side of (4.1) in the first triangular solve) and later pivots are chosen
from the last n columns (thereby exploiting the fact that equation (4.1) need be solved for z
only in the second triangular solve). By making this judicious choice of pivots and discarding
the portions of the factors that are not required, Duff and Reid [16] obtained substantial savings
in the number of operations for the triangular solves. Therefore Duff and Reid recommend using
the unsymmetric factorization when there are multiple right-hand sides.

11



Using the collection of problems in [16], we computed the number of operations required
for (1) one unsymmetric decomposition that gives a slight bias toward early pivots in late rows
and late pivots in late columns, plus three back solves (which is the number of back solves
required by the tensor method when p = 1 and the tensor model has no root, or when p = 2
and the tensor model has a root), and (2) one symmetric indefinite decomposition obtained by
the method of Bunch [9] using 2 X 2 pivots, plus three back solves. These computations showed
that the unsymmetric decomposition is approximately 25% more efficient than the symmetric
one. For greater values of p, the unsymmetric decomposition has an even larger advantage over
the symmetric one. Based upon this experiment and the recommendation of Duff and Reid, we
use Hachtel’s method with an unsymmetric decomposition in our tensor method.

The remaining issue in the case when J is nonsingular is the pivoting strategy; this is
discussed in Section 4.1. In the case when J is singular, based on Section 3.2 we instead wish to
solve a linear least squares problem involving j; this leads to additional issues that are discussed
in Section 4.2.

4.1 Solving the Least Squares Problems When the Jacobian Has Full Rank

As discussed above, we wish to determine an unsymmetric row and column pivoting strategy
for factoring the augmented matrix in (4.1) that reduces the costs of the backsolves needed in
Algorithm 3.1. Note that Algorithm 3.1 involves both terms of the form J*b and terms of the
form (JTJ)"tv. Terms of the form J*b will be computed by using (4.1). To compute terms of
the form (JT.J)~'v, where v € R", we solve the augmented system

I J —1 0
= (4.4)
JT 0 z —v
for z. From its two components
JIt = v (4.5)
and
Jz—1t = 0, (4.6)

(4.4) is equivalent to (JTJ)z = v.

From Algorithm 3.1, it is seen that the computations of the form J¥b require both the
solution 2 and the residual r. Thus, the column-pivoting decisions are irrelevant as far as saving
computations in these backsolves. On the other hand, in solving (4.4) we need to compute z but
not t. Therefore we construct the pivoting strategy to bias the last n pivots to come from the
last » columns in order to save steps in the upper triangular backsolve. For the row-pivoting
strategy, we can bias the selection so that the first backsolve can skip the computations involving
either the n zeroes in the right-hand side of (4.1) or the m zeroes in the right-hand side of (4.4).
Since the latter choice results in a larger savings, we bias the first m pivots to come from the
first m rows.
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We use a sparse variant of Gaussian elimination on the augmented matrix (4.4), using the
following Markowitz pivot selection strategy, which is based on a strategy in [16]. The sparsity
cost of a nonzero in row ¢ and column j is 7;c;, where r; is either the number of nonzeros in
row ¢ if 4 < m or one more if ¢« > m, and ¢; is either the number of other nonzeros in column
j if 7 < m or one more if j > m. If this pivot strategy produces the optimal case, namely, the
first m pivots come from the first m rows of the augmented matrix (4.4), and the last n pivots
come from the last n columns, we can omit the first m steps in the lower triangular backsolve
and disregard the first m columns of the lower triangular factor, and can omit the last n steps
in the upper triangular backsolve and disregard the last n rows of the upper triangular factor,
in solving (4.4) for z. In many problems, however, this pivot strategy produces a nonoptimal
case, namely, only the first m; < m components of the vector P [0 — ?J]T are zeros, and zq
is the position of the first z component in the vector P,T [—t Z]T. In this case we can omit
the first mq steps in the lower triangular backsolve and disregard the first my columns of this
lower triangular factor, and can omit the last z; — 1 steps in the upper triangular backsolve and
disregard the last z; — 1 rows of the upper triangular factor, in solving (4.4) for z.

4.2 Solving the Least Squares Problems When the Jacobian Is Rank Deficient

When the Jacobian is rank deficient, we need to solve linear least squares problems to compute
JTF and Jt A, and linear systems of equations to compute (jTj)_IS, where J = J + ADBST,
JeRTET A€ RMIP D; € RP*PS € R™*Pand J is rank deficient.

To solve a least squares problem of the form

L N~
ml;lel%lnlzeH(J—l—ADﬁS )z —b |2, (4.7)

where 2 € R and b € R, we first write (4.7) as an augmented system of (m + n) equations for
the (m 4+ n) unknown components of r and z,

T J + ADBST r b
= i (4.8)
JU 4+ SDBAT 0 z 0

(As in (4.1), r € R™ is the residual of (4.7).) However, since J = J + ADBST is dense, forming
and solving (4.8) would not be efficient. Instead, if we define

STe =y (4.9)
and

DsATr = 2, (4.10)
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the system (4.8) is equivalent to

T J AD; 0 r b

JT 0 0 S z 0
(4.11)

DBAT 0 0 -1 Y 0

0 ST .y 0 z 0

This system has 2p additional rows and columns in comparison with (4.8). Now, recall that
the system (4.11) is constructed only if the augmented system (4.1) is rank deficient. That
means that we have already factorized the augmented matrix in (4.1) and discovered it to be
rank deficient. Therefore, we need to finish factorizing the remaining rows and columns starting
at the point where (4.1) was discovered to be rank deficient, to obtain the factorization of the
augmented matrix in (4.11). If J is singular, we calculate the Gauss-Newton step (see Section
5), which will be used as the search direction from the current iterate z, for the line search
global strategy.

Similarly to the full-tank case, we are also able to use the same augmented matrix that
solves J+F and Jt A to solve the systems of equations (jTj)—ls. We proceed by solving the
augmented system

AT
|

S

<

I
- (4.12)
JT 0 z; —5;

for 2; € R*, i = 1,...,p, where t; € R and s; € R" = column ¢ of 5. If we define 5Tz; =y,
and DBATti, the augmented system (4.12) can be rewritten as

I J ADB 0 —1; 0
JT 0 0 5 i —5i
(4.13)
DBAT 0 0 -1 i 0
0 ST —I 0 —z 0
for #;, i = 1,...,p. This system has the same matrix as (4.11), but a different zero pattern on

the right-hand side.
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As when J is nonsingular, we choose the pivoting strategy that is optimal for solving (4.13).
That is, we wish to bias the first m pivots to come from the first m rows of the augmented matrix
(4.13), and the last n pivots to come from the last n columns. In the best case, this strategy
enables us to omit the first m steps in the lower triangular backsolve and disregard the first m
columns of the lower triangular factor, as well as omit the last n steps in the upper triangular
backsolve and disregard the last n rows of the upper triangular factor, when computing an
expression of the form (J7.J) v,

5 Solving the Gauss-Newton Model

This section discusses a stable method for solving the linear least squares problem

inimi d+ F 1
ml;lelggllzeHJ + F|2 (5.1)

along with the tensor model, where J € R®™*" is sparse, and F' € R™.

If J has full rank, the solution to the linear least squares problem (5.1) is already available
from the computation of J*F from Step 0 of Algorithm 3.1.

If the Jacobian matrix is rank deficient, we use an extension of the method of Peters and
Wilkinson [22], developed by Bjorck and Duff [5], to find some solution d to (5.1). If we let M
denote the augmented matrix in (4.1), an LU factorization of M using Gaussian elimination
with both row and column pivoting is equivalent to multiplying a permutation of M from the
left by the product, GG, of a sequence of elementary elimination matrices. If we carry out the
same transformations on the right-hand side [—F O]T, we obtain

0

—F c
][] o
where Py, P, are permutation matrices, U is an p x (m + n) upper trapezoidal matrix with

p=rank(M)=m+ rank(J), c € R*, and e € R™T"7,
If we look at this in terms of an LU decomposition of M, we have

GPMP, = [U ] (5.2)

PIMP, = LU, (5.4)

where L is a unit lower trapezoidal (m + n) x p, and
- 0
W[ 4] -] o

Now let [r, d,]” be any solution of the system

vPl l 2] = ¢ (5.6)
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where e; € R™ and e; € R”, we have that ||e || is the I; norm of the residual of the augmented
system. Also JTr, = —eqy, and —r, — ey = Jd; + F is the residual of the original overdetermined
system.

Thus, if ||e ||z < € (¢ some suitable tolerance), then d; is the solution to (5.1) with a slightly
perturbed right-hand side [—F O]T, at the cost of a simple forward elimination (5.3) and back
substitution (5.6). However, if ||e |5 is larger, we would like to solve the least squares problem
(5.1) using the initial decomposition (5.2) and (5.3). For an arbitrary [r d]’ we have that

Pl(M[Z]—[_OF]) _ LUPQT[Z]_LC_M

:Lz_[‘)], (5.8)

€
where
Up,” l 2] = ¢+ (5.9)
Therefore, d is a least squares solution of (5.1) if it satisfies (5.9), where z is the solution of
minimize || Lz — 0 I (5.10)
zERN € 2 '

The least squares problem (5.10) can be solved by using the (m+n+p) X (m+n+ p) augmented
matrix

= : (5.11)

where 7 is the residual of (5.10). We then compute the solution of (5.9) for d.

Thus, if ||e||2 is larger than ¢, then d is the solution to (5.1) at the cost of one forward solve
(5.3), one back solve (5.6), an LU factorization of the augmented matrix (5.11) followed by one
forward and one backward solve using the resulting factors L and U, respectively, and a back
solve (5.9).
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An advantage of this modification of Peters and Wilkinson’s method is that equation (5.11)
is used only to compute a correction to equation (5.9). Therefore, for problems with small
residuals, this method should be more stable, since any ill conditioning in L will affect only the
correction z. Also, L is less likely than U to be ill conditioned. Moreover, since

(JTJd = —JT'F)y=>d"JT'F = —d"JTJd <0, (5.12)

the solution d to (5.1) is a descent direction unless Jd = 0, which implies that J7 F = 0.

6 Implementation and Testing of Tensor Methods

In this section we summarize the overall implementation of tensor methods for solving sparse
nonlinear least squares problems. We also describe testing of an algorithm based on this im-
plementation compared with an algorithm that is based on the linear Gauss-Newton model but
that is identical otherwise. We present analysis and summary statistics of the test results.

6.1 Implementation

The following algorithm is an implementation of an iteration of our tensor method for sparse
nonlinear least squares problems. We have used only one past point (p = 1) in the implementa-
tion, since this again turned out to be the most efficient choice in virtually all cases.

Algorithm 6.1 An Iteration of the Tensor Method for Sparse Nonlinear Least Squares
Given z. and F(z.), let My and My be the matrices given in (4.1) and (4.11), respectively.
Step 0 Calculate J(z.), and decide whether to stop.

Step 1 Calculate the second-order term of the tensor model so that the tensor model interpo-
lates F(z) at the most recent past point (i.e., p = 1.)

Step 2 Form the augmented matrix My, and factorize it using the MA28 software package
[15], employing the Markowitz pivoting strategy oriented toward efficiently computing an
expression of the form (JT.J)~!v, where v € R" (see Section 4.1.)

Step 3 If My has full rank, use Algorithm 3.1 to solve the tensor model M(xz, +d) = F(z.) +
Fl(a.)d+ %A{STd}Q, to compute the tensor step d;. Go to Step 5. Else

Step 3.1 Construct the augmented matrix Mj.

Step 3.2 Complete the factorization of M, as follows. Let p denote the rank of Mj.

Step 3.2.1 Update the lower left 2p X p rectangular submatrix, and the upper right
p X 2p rectangular submatrix of My, using the multipliers stored in the L factor
of the LU factorization of M;.

Step 3.2.2 Factor the lower right square (m +n — p+ 2p) X (m + n — p + 2p) sub-
matrix using the MA28 software package [15].
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Step 3.2.3 Update My by combining the LU factorization of the submatrix in Step
3.2.2, the updated submatrices in Step 3.2.1, and the LU factorization of My,
into one LU factorization of Ms.

Step 4 If J is rank Eieﬁcient Abut M has full rank, use AlAgorithm 3.1 to solve the tensor model
M(wc +6) = F(z.) + J(2.)b + TA{ST6}?, where F(x.) = F(a.) + J(z.)d + LA{5Td}?,
J(z.) = J(x.)+ ADBST, and d is the step computed in the previous iteration, to compute

the step 8. Then set d; = d 4+ 6. (Any values of the form J*v or (J7.J)~'v are computed
using the augmented matrix approaches described in Section 4.2.) Else

Step 4.1 Calculate the singular Gauss-Newton step d,, by the Bjorck and Duff method
[5] (see Section 5).

Step 4.2 Select the next iterate x4 using a standard backtracking line search strategy
[14], where d,, is the search direction; go to Step 6.

Step 5 Select the next iterate x4 using the global framework described in Algorithm 6.2.
Step 6 Set z. — 24, J(2.) — J(24), and go to Step 0.
Algorithm 6.2 Global Framework for Line Search for Sparse Nonlinear Least Squares

Let z. be the current iterate, d,, the Gauss-Newton step, d; the tensor step, g = J(z.)! F(z.)
the gradient at z., and o = 107*

slope = g1d;
fo = 3I1F (2 |13
= a4 dy

fr = 3llE @13
if f1 < f. + a-min{slope,0} then
return v = acfl_
else
comment. Test if the tensor step is sufficiently descent
if g7d; < —107%|g]|2/|d:||2 then
Find an acceptable acfl_ in the tensor direction d;,
by performing a standard backtracking line search [14]
return v = acfl_
else
Perform a standard backtracking line search [14] on d,, to obtain 27
return z; =z
endif
endif
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6.2 Test Results

We have run the sparse tensor and Gauss-Newton codes on versions of the nonlinear least squares
problems described by Al-Baali and Fletcher [1] and singular modifications of these problems.

Both of these codes terminate successfully if the relative size of (z4 —z.) is less than machepsg,

or || F(z4)]]s is less than macheps?, or the relative size of J(z3 )T F(zy)is less than macheps?
and unsuccessfully if the iteration limit is exceeded. If the last global step fails to locate a point
lower than z. in the line search global strategy, the method stops and reports this condition;
this may indicate either success or failure. We use the graph coloring algorithm of Coleman and
Moré [12] to compute the sparse finite difference approximation of the Jacobian matrix.

The first type of test problem is the Signomial problem, defined by

[ n,2
ri(z) = €¢+ZC¢kH$]‘a”k, v = 1,...,m, (6.1)
k=1 j=s

where H?’ZZS means j = s, s+ 2, s+ 4,...,n, and s = mod(i,2). The parameter values
are determined by using pseudo-random numbers. The a;;; are uniformly distributed random
integers in [0,3], and with likelihood p (p = min(lOO—[z@], 90)) these values are randomly reset
to zero. The parameters ¢;; and ¢; are in [-100,100] and [-10,10], respectively, the initial vector
zo has elements in [1,2], and the index [ = 8 is chosen. The solution of this type of problem is
not known a priori, and indeed different local solutions may exist. The size of the residuals at
the solution is typically large and is determined mainly by the bounds [-10,10] on ¢; and can be
changed by varying these bounds. We also tested a modified version of the Signomial problem
where the residual at the solution (1,...,1) is zero.

The next type of test problem is the Fzponential problem, defined by

{ n,10
ri(z) = —e + Z cikexp(z a;grr;), ¢ = 1,...,m, (6.2)
k=1 j=s
where Z?,leo means j = s, s+ 10, s+ 20,...,n, and s = mod(i,10). The parameters are again

determined by using pseudo-random numbers; the a;;, are real numbers in [-0.2,0.3], and with
likelihood 0.5 these numbers are reset to zero. The parameters ¢;; are random numbers in [-5,0],
and the index [ = 5 is chosen. The parameters e; are determined as follows. A random vector
2" with elements in [-1,0] is generated, and

5,m,10

l
ei(z) = Vi‘|‘ZCik€$p( Z aijkwg), = 1,...,m, (6.3)
k=1 7=1

determines e;, where v; is random in [-10,10]. The initial vector z¢ is defined by
ro = 2’4+ 0.1(2" — '), (6.4)

where 2’ is another random vector with elements in [-1,0]. Again the solution of this type of
problem is not known a priori. The size of the residuals at the solution is typically large and
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is determined mainly by the bounds [-10,10] on »;. We also tested a modified version of the
Exponential problem where the residual at the solution (1,...,1) is zero.
The final type of test problem is the Trigonometric problem, defined by

n,4
Fi(z) = —e + Z(aijsinxj + bijcosx;), © = 1,...,m, (6.5)

J=s
where Z?’fs means j = s, s+4, s+8,...,n and s = mod(?,4), and «a;;, b;; are random integers
in [-100,100]. We determine the coefficients e; from the equations 7;(z') = 0, where 2’ has

random elements in [—m,7]. However, the residuals 7;(z) are zero at z'; hence, to generate a
large residual problem, we define

7‘2(90) = —d; + fi(w)z, (6.6)

where d; is random in [-10,10]. Unlike (6.5), the sum of squares of these residuals is not minimized
by z’, and so the solution is not known in advance. The starting point g is also generated
randomly in [—7, 7]. The size of the residuals at the solution is typically large and is determined
mainly by the bounds [-10,10] on d;. We also tested a modified version of the Trigonometric
problem where the residual at the solution (1,...,1) is zero.

We then created singular test problems as proposed in Schnabel and Frank [23] by modifying
both the zero residual and the nonzero residual cases of the nonsingular test problems described
above to the form

F(z) = F(z) - F'(z)AAT A AT (2 — 2,), (6.7)

where F(z) is the standard nonsingular test function, z, is its root, and A € R™** has full
column rank with 1 < k < n. Note that F(z) also has a root at x, and rank (F”(z,)) =
n — rank(A). We used (6.7) to create two sets of sparse singular problems, with F’(z) having
rank n — 1 and n — 2, respectively, by using the matrix A € R™*! and R™*2, respectively, and
whose columns are the unit vectors.

All our computations were performed on the Sun SPARC 2 computer of the Computer Science
Department of the University of Colorado at Boulder, using double-precision arithmetic. Most
of these test problems were run with dimensions (m,n) = (300,100), and (m,n) = (600, 200).
For each test problem we used several different starting guesses generated by

&g = wo+ const(xg — x4), (6.8)

where const is a real number indicating how far the initial guess is from the solution, and x, is
the solution resulting from running the problem with the initial starting guess x¢. We increased
the iteration limit to 200 and sometimes to 300 when we ran large residual problems. The main
reason is that the convergence rate for such problems is linear at best, and usually it takes many
iterations to converge to the solution. For any given problem, the same iteration limit was used
by both methods.

Tables 1 to 6 summarize the performance of the sparse tensor and Gauss-Newton methods
on the test problems described above. Fach table presents the test results for a nonsingular
test problem and its rank n — 1 and rank n — 2 singular versions. Columns “Better” and
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“Worse” represent the number of times the tensor method was better and worse, respectively,
than the Gauss-Newton method by more than one iteration over all the starting points for the
problem under consideration. The “Tie” column represents the number of times the tensor and
Gauss-Newton methods required within one iteration of each other. For each set of problems,
we summarize the comparative costs of the tensor and Gauss-Newton methods using average
ratios of three measures: iterations, execution times, and function evaluations. The average
iteration ratio is the total number of iterations required by the tensor method, divided by the
total number of iterations required by the Gauss-Newton method on these problems. The same
measure is used for the average execution time and function evaluation ratios. Tables 7 to 9
present the average iteration and function evaluation ratios on the sparse nonlinear least squares
problems described above. All these ratios include only problems that were successfully solved
by both methods.

We have excluded from the summary of statistics all cases where the tensor and Gauss-
Newton methods converge to a different solution, or to the same solution but not the singular
solution z, if singular problems are considered. The statistics for the “Better,” “Worse,” and
“Tie” columns include the cases where only one of the two methods converges, and exclude the
cases where both methods do not converge.

The following observations can be made on the basis of Tables 1 to 9. The tensor method
almost always outperforms the Gauss-Newton method. On this particular set of test problems,
the tensor method improvement over the Gauss-Newton method is about the same for rank n,
n — 1, and n — 2 problems, in iterations and execution time, and more dramatic in function
evaluations for rank » — 1 problems. Overall, the average improvement of the tensor method
over the Gauss-Newton method is about 31% in iterations, about 24% in execution time, and
about 32% in function evaluations. We comment on the smaller improvement in execution times
than in function evaluations or iterations below.

Of all the test problems, 8 nonsingular problems, 24 rank » — 1 problems, and 23 rank n — 2
problems were solved by the tensor method but not by the Gauss-Newton method. On the other
hand, only 1 rank n—1 problem and no rank n or rank n —2 problems were solved by the Gauss-
Newton method and not by the tensor method. Most problems solved by the tensor method but
not by the Gauss-Newton method have large residuals at the solution; of the problems solved
by the tensor method but not the Gauss-Newton method, only 1 nonsingular problem, 1 rank
n — 1 problem, and 4 rank n — 2 problems have zero residuals at the solution.

We observe from Tables 8 and 9 that the average improvement of the tensor method over the
Gauss-Newton method in execution time is about 9% less than that in iterations for zero-residual
problems, and about 5% less for large residual problems. This is because a tensor iteration re-
quires at least 2p more backsolves than a Gauss-Newton iteration (here, p = 1). Empirically, the
increased cost per iteration for zero-residual problems ranges from 1% in problems with expen-
sive function evaluation, like the Trigonometric problem, to 23% in problems with inexpensive
function evaluation, like the Exponential problem. For large residual problems, the increased
cost ranges from 1% in problems with expensive function evaluation to 21% in problems with
inexpensive function evaluation. This accounts for the smaller improvements in execution time.

A closer examination of the sparse nonlinear least squares test results shows that the aver-
age improvements by the tensor method are slightly more for zero-residual problems than for
large residual problems: about 33% in iterations, 24% in execution times, and 36% in function
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Table 1: Summary for the Signomial Problem with Zero Residual

Rank Tensor Average Ratio—Tensor/Standard
m | n | F'(z.) | Better | Worse | Tie | Iteration | Time Feval
300 | 100 n 8 0 0 0.63 0.69 0.65
n—1 8 0 0 0.53 0.59 0.54
n—2 8 0 0 0.58 0.63 0.59

evaluations for zero residual problems, as opposed to 29% in iterations, 23% in execution times,
and 28% in function evaluations for large residual problems. On rank n — 1 problems this is
due in part to the tensor method achieving superlinear convergence on zero residual problems,
whereas the Gauss Newton method is linearly convergent at best on these problems.

The analysis in [17] shows that tensor methods for nonlinear equations have at least a 3-step
order 1.5 rate of convergence on a class of problems with rank deficiency one at the solution,
whereas Newton’s method is linearly convergent with constant 0.5 on the same problems. These
results can be extended to tensor and Gauss-Newton methods for nonlinear least squares on zero
residual problems with rank deficiency one. To study these theoretical results experimentally,
we examined the sequence of ratios

2" — | /1]a" ! = ] (6.9)

produced by the Gauss-Newton and tensor methods on problems with rank(#"(z,)) = n—1 and
where the residual at the solution is very small or zero. These ratios for a typical problem are
given in Table 10. In almost all cases the Gauss-Newton method exhibits local linear convergence
with constant near 0.5. The local convergence rate of the tensor method is faster, with a typical
final ratio of 0.01. This final ratio might be even smaller if analytic Jacobians are used in
combination with tighter stopping tolerances.

We also examined the sequence of ratios produced by the Gauss-Newton and tensor methods
on problems with rank(F’(z,)) = n — 1 and where the residual at the solution is large. These
ratios for a typical problem are given in Table 11. In almost all these cases the Gauss-Newton
method is slowly locally g-linearly convergent. The local convergence rate of the tensor method
is still linear, as expected, but usually with a smaller linear convergence constant than the
Gauss-Newton method.

We ran most of the test problems using one and two past points in the tensor method, and
noticed almost no difference in iterations or function evaluations. However, there was an increase
in execution time when we used two past points because of the two extra back solves required
per tensor iteration. Thus, our software package for solving sparse nonlinear least squares uses
only one past point. This algorithmic decision also decreases the storage requirements of the
package.
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Table 2: Summary for the Trigonometric Problem with Zero Residual

Rank Tensor Average Ratio—Tensor/Standard

m | n | F'(z.) | Better | Worse | Tie | Iteration | Time Feval

300 | 100 n 10 0 0 0.52 0.53 0.52
n—1 9 0 0 0.60 0.61 0.60
n—2 6 0 0 0.66 0.68 0.67

600 | 200 n 8 1 0 0.66 0.67 0.68
n—1 9 0 1 0.69 0.71 0.70
n—2 6 1 0 0.81 0.83 0.82

Table 3: Summary for the Exponential Problem with Zero Residual

Rank Tensor Average Ratio—Tensor/Standard

m | n | F'(z.) | Better | Worse | Tie | Iteration | Time Feval

300 | 100 n 19 0 2 0.69 0.88 0.71
n—1 18 0 3 0.73 0.93 0.76
n—2 19 2 0 0.74 0.92 0.76

600 | 200 n 19 0 2 0.77 0.95 0.78
n—1 21 1 0 0.76 0.93 0.77
n—2 21 0 0 0.74 0.89 0.75

Table 4: Summary for the Signomial Problem with Large Residual

Rank Tensor Average Ratio—Tensor/Standard
m | n | F'(z.) | Better | Worse | Tie | Iteration | Time Feval
300 | 100 n 4 0 0 0.70 0.71 0.70
n—1 4 0 0 0.72 0.73 0.72
n—2 4 0 0 0.72 0.73 0.72
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Table 5:

Summary for the Trigonometric Problem with Large Residual

Rank Tensor Average Ratio—Tensor/Standard
m | n | F'(z.) | Better | Worse | Tie | Iteration | Time Feval
300 | 100 n 17 1 0 0.75 0.76 0.75
n—1 9 2 1 0.74 0.76 0.74
n—2 6 0 0 - - -
600 | 200 n 17 1 0 0.73 0.74 0.73
n—1 15 0 0 - - -
n—2 12 0 0 0.50 0.50 0.49
Table 6: Summary for the Exponential Problem with Zero Residual
Rank Tensor Average Ratio—Tensor/Standard
m | n | F'(z.) | Better | Worse | Tie | Iteration | Time Feval
300 | 100 n 9 0 0 0.70 0.80 0.70
n—1 9 0 0 0.71 0.82 0.72
n—2 10 0 0 0.70 0.80 0.70
600 | 200 n 7 0 0 0.76 0.85 0.77
n—1 6 1 0 0.76 0.85 0.77
n—2 5 1 0 0.89 1.00 0.90

Table 7: Average Ratios of Tensor Method versus Gauss-Newton Method on All Sparse Nonlinear

Least Squares

Table 8: Average Ratios of Tensor Method versus Gauss-Newton Method on Sparse Nonlinear

Rank Tensor

F'(x,) | Tterations | Execution Time | Function Evaluations
n 0.69 0.75 0.70

n—1 0.69 0.77 0.63

n—2 0.70 0.77 0.71

Least Squares with Zero Residuals

Rank Tensor

F'(z,) | Iterations | Execution Time | Function Evaluations
n 0.65 0.74 0.66

n—1 0.66 0.75 0.55

n—2 0.70 0.79 0.71
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Table 9: Average Ratio of the Tensor Method versus the Gauss-Newton Method on Sparse
Nonlinear Least Squares with Large Residuals

Rank Tensor

F'(z,) | Iterations | Execution Time | Function Evaluations
n 0.72 0.77 0.73

n—1 0.73 0.79 0.73

n—2 0.70 0.75 0.70

7 Summary and Future Work

We have extended tensor methods to large, sparse nonlinear least squares problems. These
methods form the tensor model in the same way as in the tensor methods developed for small to
medium-sized dense nonlinear least squares [6, 8], with the exception that only one past point
is used in the interpolation process. The tensor step, however, is computed by an entirely new
approach that preserves the sparsity of the Jacobian matrix and allows the tensor model to be
solved efficiently and stably when the Jacobian matrix is singular. This new solution approach
is the main contribution of this paper and is essential because the approach for small dense
problems used in [6, 8] destroys the sparsity of the Jacobian matrix as a result of orthogonal
transformations of the variable and function spaces.

The numerical test results show that the tensor method is much more efficient than the
Gauss-Newton method on both nonsingular and singular test problems, in terms of iterations,
function evaluations, and execution times. The tensor method has also proved to be significantly
more robust than the Gauss-Newton method in terms of the number of problems solved. The
consistency of these improvements indicates that the tensor method is preferable to the Gauss-
Newton method for solving sparse nonlinear least squares problems.

We currently are implementing trust region tensor methods for large, sparse nonlinear least
squares. The testing of these methods and their comparison with the line search tensor methods
described in this paper will be reported in forthcoming paper. Finally, we are implementing
the algorithms discussed in this paper in a software package, and we plan to make it generally
available in the near future.
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